
Stat 462: Lab 1 Solutions

library(DAAG)

library(MASS)

1.2

Create a new data frame by extracting the rows 1,2,4,11,13,18

 orings.new <- orings[c(1,2,4,11,13,18),]

Set the graphics device to accept two plots in one row

 par(mfrow = c(1,2))

Plot the data used for deciding whether to launch

 plot(total ~ temperature, data = orings.new, main = "Data used")

Plot all of the data

 plot(total ~ temperature, data = orings, main = "All data")

1.3

Use str() to get information about possum

 str(possum)

Determine which rows have one or more values missing

and in which columns the missing values appear

 possum[!complete.cases(possum),]

1.10

Evaluate the expression

 1000*((1+0.075)^5 - 1)

Modify expression for 3.5% p.a.

 1000*((1+0.035)^5 - 1)

Change exponent to seq(1,10)

 1000*((1+0.075)^seq(1,10) - 1)

 # This is the cumulative interest earned each year

 # for the next ten years.

1.11

 gender <- factor(c(rep("female", 91), rep("male", 92)))

 table(gender)

 # As expected, the table gives the frequency distribution of

 # females and males, with females first since they appear

 # first in the vector.

 gender <- factor(gender, levels = c("male", "female"))

 table(gender)

 # This time the table gives the frequency distribution of

 # females and males, but with males first because they are

 # associated with the first factor level.

 gender <- factor(gender, levels = c("Male", "female"))

 # Note the mistake: "Male" should be "male"

 table(gender)

 # In this case, there are no "Male" counts. Remember that R

 # is case-sensitive, so "Male" and "male" are different

 table(gender, exclude = NULL)

 # This table shows the number of elements of gender that are

 # not associated with either Male or female (so the male count)

 # see ?table

 rm(gender)

1.13

As the power of the transformation decreases towards

zero (the log transform), the distribution of both

brain and body becomes more uniform.

For larger powers, we see that there are a few very

large values of both brain and body compared to the rest

of the data. For the log-log plot, we see that there is

a generally positive relationship between log(body) and

log(brain).

 par(mfrow=c(2,2)) # 2 by 2 layout on the page

 library(MASS) # Animals is in the MASS package

 plot(brain ~ body, data = Animals)

 plot(sqrt(brain) ~ sqrt(body), data = Animals)

 plot(I(brain^0.1) ~ I(body^0.1), data = Animals)

 # I() forces its argument to be treated “as is”

 plot(log(brain) ~ log(body), data = Animals)

 par(mfrow=c(1,1)) # Restore to 1 figure per page

1.16

From the previous question 1.15...

 plot(BDI ~ age, data = socsupport)

 gender1 <- with(socsupport, abbreviate(gender, 1))

 table(gender1) # Examine the result

 country3 <- with(socsupport, abbreviate(country, 3))

 table(country3) # Examine the result

 num <- with(socsupport, seq(along=gender))

 # Generate row numbers

 lab <- paste(gender1, country3, num, sep = ":")

 # Now use identify to place labels on the outlying points

 with(socsupport, identify(age, BDI, labels = lab))

 # Press escape when finished...

1.19

 vltcv <- stack(vlt[, 1:3])

 head(vltcv)

 table(vltcv)

 # All windows look different, in particular window 2

 # which has far fewer 1's and correspondingly more

 # 2's, 3's, and 4's

1.21

 # Set up graphics device for 2x4 plots, saving the old

 # graphics parameters

 oldpar <- par(mfrow = c(2,4))

 # instead of using an explicit loop, use sapply() to

 # apply the plotting function over each column of austpop

 # Creating a new plotting function is easiest

 plotpop <- function(i, ap){

 plot(ap[,1], log(ap[,i]), xlab = "Year"

 , ylab = names(ap)[i], pch = 16, ylim = c(0,10))

 }

 sapply(2:9, FUN = plotpop, ap = austpop)

 # Compare to for loop

 for(i in 2:9){

 plot(austpop[,1], log(austpop[,i]), xlab = "Year"

 , ylab = names(austpop)[i], pch=16, ylim=c(0,10))

 }

 # NOTE: The hint in the book does not allow you to change

 # the y-axis labels, because sapply strips the names from

 # the vectors when it passes them to FUN.

