Mixed effects models DAAG Chapter 10

## Learning objectives

In this section, we will learn about mixed effects models (also known as multilevel modelling).

- Random effects
  - What are random effects? How do they differ from fixed effects?
  - How can we include random effects in the linear model framework?
- Multilevel modelling with mixed effects
  - Getting the error structure right is critical
  - Complete pooling, no pooling, and partial pooling
  - Including predictors
  - Prediction depends on the population of interest

## Mixed effects models: motivating problem

Survey data on student attitude towards science.

- 1385 students
- 20 classes in 12 private schools
- 46 classes in 29 public schools
- Data are scores from 1 (dislike) to 12 (like)
- The number of students in each class is different (range: 3 to 50)

Of interest:

- Difference between private and public schools
- Difference between girls and boys
- Are there differences between schools, and classes within schools, greater than would be due to differences between students?

Mixed effects models: motivating problem

What are the sources of variation in this data?

- Sex effect
- School type effect
- ... but also ...
  - School effect
  - Class effect
  - Student effect

Some of these effects are *fixed effects*, and some are *random effects*.

Notice also that some of these effects act at different scales – there are groupings in the data, and the groups are nested (student within class, class within school).

### Fixed effects, random effects

Characteristics of fixed effects:

- Inference is limited to the levels observed
- In a designed experiment, the levels are chosen by the experimenter
- Examples (from previous): Sex effect and School type (private vs public)

Characteristics of random effects:

- Inference can be generalized to other levels that were not observed
- In a designed experiment, the levels were chosen randomly
- There is nothing "special" about the levels included
- Examples (from previous): School effect and Class effect and Student effect

### Putting mixed effects into the linear model framework Using the science attitudes data, we wish to model

Attitude = sex + type + school + class + student

Here we will suppose that the fixed effects *sex* and *type* act at the student level. Using the familiar linear model framework,

$$y_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \alpha_{1j[i]} + \alpha_{2k[i]} + \epsilon_i$$

where

- y<sub>i</sub> is the attitude score for student i
- $\beta_0$  is the overall intercept
- β<sub>1</sub> is the coefficient for the sex effect, x<sub>1i</sub> is the sex of student i
- β<sub>2</sub> is the coefficient for the type effect, x<sub>2i</sub> is the school type of student i
- ▶ a<sub>1j[i]</sub> is the random effect of school j corresponding to student i

Putting mixed effects into the linear model framework

Using the science attitudes data, we wish to model

Attitude = sex + type + school + class + student

Here we will suppose that the fixed effects *sex* and *type* act at the student level. Using the familiar linear model framework,

$$y_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \alpha_{1j[i]} + \alpha_{2k[i]} + \epsilon_i$$

The vectors of random effects  $\alpha_1$ ,  $\alpha_2$ , and  $\epsilon$  each have their own distribution, i.e.

- $\alpha_{1j} \sim N(0, \sigma_1^2)$  for all schools j
- $\alpha_{2k} \sim N(0, \sigma_2^2)$  for all classes k
- $\epsilon_i \sim N(0, \sigma^2)$  for all students *i*

### Science attitude fit

Random effects:

|   | Groups                  | Name          | Variance   | Std.Dev.   |     |         |    |
|---|-------------------------|---------------|------------|------------|-----|---------|----|
|   | <pre>school:class</pre> | (Intercept)   | 0.3206     | 0.5662     |     |         |    |
|   | school                  | (Intercept)   | 0.0000     | 0.0000     |     |         |    |
|   | Residual                |               | 3.0521     | 1.7470     |     |         |    |
| N | lumber of obs:          | : 1383, group | os: school | L:class, 6 | 56; | school, | 41 |

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

```
Fixed effects:

Estimate Std. Error t value

(Intercept) 4.7218 0.1624 29.071

sexm 0.1823 0.0982 1.857

PrivPubpublic 0.4117 0.1857 2.217
```

```
Correlation of Fixed Effects:
(Intr) sexm
sexm -0.309
PrivPubpblc -0.795 0.012
```

### Science attitude fit - no school effects

```
Random effects:
            Name Variance Std.Dev.
Groups
school:class (Intercept) 0.3206 0.5662
                       3.0521 1.7470
Residual
Number of obs: 1383, groups: school:class, 66
Fixed effects:
            Estimate Std. Error t value
(Intercept) 4.7218 0.1624 29.072
          0.1823 0.0982 1.857
sexm
PrivPubpublic 0.4117 0.1857 2.217
```

Correlation of Fixed Effects: (Intr) sexm sexm -0.309 PrivPubpblc -0.795 0.012

## Science attitude fit

What have we learned?

- The best estimate of the sex effect is 0.1823 points higher for males
- The best estimate of the school type effect is 0.4177 points higher for public
  - Both of these fixed effects are marginally significant
- The proportion of variation due to differences between schools (aside from public-private effect) is approximately zero
- ► The proportion of variation due to differences between classes is 0.321/(0.321 + 3.05) = 9.5%

► The proportion of variation due to differences between students is 3.05/(0.321 + 3.05) = 91.5% Getting the error structure wrong: ignoring class effects

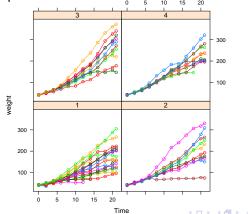
Random effects:

| Groups | 3   | Name  |         | Variano | ce St | Std.Dev. |    |
|--------|-----|-------|---------|---------|-------|----------|----|
| school | L   | (Inte | ercept) | 0.1655  | 0.    | .4068    | 3  |
| Residu | ıal |       |         | 3.2185  | 1.    | .794(    | )  |
| Number | of  | obs:  | 1383,   | groups: | scho  | ool,     | 41 |

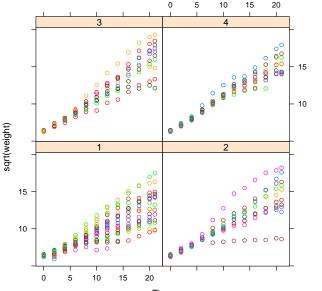
Fixed effects:

|               | Estimate | Std. Error | t value |
|---------------|----------|------------|---------|
| (Intercept)   | 4.7377   | 0.1634     | 29.001  |
| sexm          | 0.1969   | 0.1007     | 1.956   |
| PrivPubpublic | 0.4168   | 0.1852     | 2.250   |

Correlation of Fixed Effects: (Intr) sexm sexm -0.274 PrivPubpblc -0.807 -0.031


# Getting the error structure wrong: ignoring class and school effects

| Coefficients: |                               |                                            |                                                            |               |  |  |
|---------------|-------------------------------|--------------------------------------------|------------------------------------------------------------|---------------|--|--|
| Estimate      | Std. Error                    | t value                                    | Pr(> t )                                                   |               |  |  |
| 4.74024       | 0.09955                       | 47.616                                     | < 2e-16                                                    | ***           |  |  |
| 0.15093       | 0.09860                       | 1.531                                      | 0.126064                                                   |               |  |  |
| 0.39507       | 0.10511                       | 3.759                                      | 0.000178                                                   | ***           |  |  |
|               |                               |                                            |                                                            |               |  |  |
| : 0 '***'     | 0.001 '**'                    | 0.01 ''                                    | *'0.05'.                                                   | . ' 0.1 ' ' 1 |  |  |
|               | 4.74024<br>0.15093<br>0.39507 | 4.740240.099550.150930.098600.395070.10511 | 4.740240.0995547.6160.150930.098601.5310.395070.105113.759 |               |  |  |


Residual standard error: 1.833 on 1380 degrees of freedom
 (2 observations deleted due to missingness)
Multiple R-squared: 0.01175, Adjusted R-squared: 0.01032
F-statistic: 8.203 on 2 and 1380 DF, p-value: 0.0002873

### Random coefficients: Random slopes

- Random effects can enter as random slopes.
- Include a fixed effect for the average slope, plus random effects for adjustments to the slope.
- Chick weights over time for chicks on four different diets.
- Model with random slopes for each chick, and a fixed effect of diet on slope.



### Chicks - square root transformation



Time

|□▶ ▲圖▶ ▲臣▶ ▲臣▶ | 臣 | 釣�@

#### Chicks - mixed effects model fit


Formula: sqrt(weight) ~ Time + (Time - 1 | Chick) + Diet:Time
Data: ChickWeight

Random effects: Groups Name Variance Std.Dev. Chick Time 0.01043 0.1021 Residual 0.23868 0.4886 Number of obs: 578, groups: Chick, 50

Fixed effects:

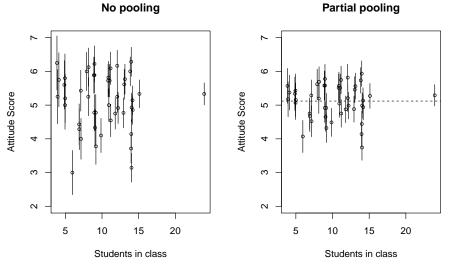
|             | Estimate | Std. Error | t value |
|-------------|----------|------------|---------|
| (Intercept) | 6.33795  | 0.03833    | 165.35  |
| Time        | 0.31156  | 0.02369    | 13.15   |
| Time:Diet2  | 0.08167  | 0.04010    | 2.04    |
| Time:Diet3  | 0.16085  | 0.04010    | 4.01    |
| Time:Diet4  | 0.13527  | 0.04011    | 3.37    |

### Chicks - mixed effects model fit










Sac

## Pooling

- Pooling refers to the aggregation of observations into groups.
- Going back to our initial example, suppose we want to calculate average attitude scores:
  - ► No pooling: In this case, we treat each classroom as a replicate
  - Complete pooling: In this case, we pool all classrooms together

 Partial pooling: A compromise achieved by modelling classroom effects as a group (mixed effects model) Pooling



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 • ��