Styles of data analysis

DAAG Chapter 2



Objectives

e Learn the common tools of Exploratory Data
Analysis
— Histograms, density plots, boxplots
— Scatterplots and scatterplot matrices
— Data summaries

e Learn about what to look for and what can go
wrong
— Qutliers, skewness, clustering
— Non-linearity, heteroscedasticity

 Be mindful of good statistical practice,
overreaching, overfitting, ...



What is the first rule of data analysis?

Plot your data!



Exploratory data analysis

 Formalized by John Tukey

— Guiding principle: let the data speak for themselves

e Why do EDA?
— Suggest new ideas or understandings

— Reveal problematic assumptions made before data
collection

— Check on assumptions to be made in subsequent
analysis

— Suggest future research questions or directions
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Plots for a single variable
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Plots for bivariate data

e Experiment with 17 tasters
— Milk sample with 1 unit of sweetener

— Milk sample with 4 units of sweetener

 Each person rated the sweetness of the two
samples



Plots for bivariate data
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Plots for bivariate data
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Plots for bivariate data
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Plots for bivariate data
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Clustering
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Outliers

* Require special treatment

* Could be highly influential in subsequent
modeling

 Could suggest new understanding
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Conditioning plots

* Earthquake data Given: depin
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Sparklines

DAX W 4133-6186
M W 6045-8412
CAC W 2858-4388
FTSE W 5014-6179

EU daily closing price indices: 1998



(Sparklines R code)

EU <- wi ndow EuStockMarkets, start = 1998 )
par( nfcol = c(4,1), mar = ¢(1,5,1,8)+0.1, oma = ¢(2,0,0,0) )
for( 1 in 1:4 ){

plot( EU,i], axes = FALSE, xlab = "", ylab = "" )

rr <- range( EU,i] )

nt ext ( paste( round(rr), collapse="-" ), 4, las = 1)
nt ext ( col names(EU)[i], 2, las = 1)

}
next("EU daily closing price indices: 1998", 1, outer=TRUE, |ine=0)



Summary statistics

e Central tendency: Survival on the Titanic
mean, median, Age

Cﬁld Adult
mode, ...

e Dispersion:
standard deviation,

Male

Sex

IQR, range, ...

 Counts by group or

Female

category

No

Yes No Yes

Survived



The data analysis process

* Moving from EDA into more directed data
analysis, we begin to ask questions of the data
— Questions motivated by scientific understanding
e Testing hypotheses

e Mechanism is important

— Questions motivated by a goal to predict
e Prediction performance is important

e Mechanism is not necessarily important



Observational vs Experimental Data

 Experimental data are the gold standard
— Randomization allows isolation of effects
— Caution about generalizing results

e Observational data are abundant

— Experiments are not always possible

— Features and relationships are difficult or
impossible to isolate



Data from surveys

 Are we measuring what we
think we are measuring?

— Large field of research

— Are we measuring the population
of interest?

— Non-response issues

— Does the question measure what
we are interested in?

e e.g. Would like to know whether
people support handgun ownership.
— Poll people leaving a sporting goods store.

— Ask: “Have you considered handgun
ownership for self defense?”

HELLDO, Do YOU HAVE ANY
OPINIOMNS THAT FIT INTO
OUR PRECONCEWED
QUESTIONS?

f YES AND NO...




Planning ahead

 The best time to plan data analysis is before the
data are collected

— Preliminary data or data from another study can be
used to design the analysis and experiment/survey

 The reality is that we are often asked to do data
analysis after the fact

— Although EDA can be useful, it is important to ask

directed questions of the data to avoid fishing
expeditions

— Sometimes, it is not possible to answer a given
guestion using a given dataset without resorting to
unreasonable assumptions



Stat 862 students

e Reminder to see me this week about project
alternative

e “Proposal” due date is Monday October 6



