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Objectives

• Learn about statistical models as signal + noise

• Introduction to fitting models to data

• Introduction to models for the noise 

component

• Learn about simulation from models and 

sampling

• Introduction to checking model assumptions



Statistical models

• Statistical models are often 
compartmentalized into a signal component 
and a noise component

– Signal component is deterministic

– Noise component is random

• Signal component is often meaningful, but 
sometimes not (curve fitting)

• Noise component can be due to variation in 
process and/or variation in observation



Statistical models

• Model with additive error

�� = �(��) + 	�

• Simple linear model

�� = 
� + 
��� + 	�

• Exponential model

�� = 
�
���� + 	�



Models for noise

• Bernouilli

• Binomial

• Poisson

• Normal

• …



Bernouilli

• Probability of “success” = p

• Probability of “failure” = 1-p

• X = 1 if “success”, X = 0 if “failure”

• Example: Did it rain on a given day?



Binomial

• Binomial is a sum of independent Bernouillis

• Expected value is np

• Variance is np(1-p)

• Example: Number of days it rained last month 

(what assumptions are made?)



Poisson

• The number of events that occur in a certain 

(time or space) interval.

• The events occur independently.

• λ is the expected value (mean) and variance.

• Example: number of cars that pass by Jeffery 

Hall in one minute.



Normal

• Many processes follow a normal distribution, 
especially sums or averages (due to CLT).

• The distribution has nice properties, so it is 
used a lot in modeling.

• Parameters are mean μ and variance σ2

• Example: Grades on an exam.

• Lognormal distribution is for when the log of a 
random variable follows a Normal. Often used 
for multiplicative processes.

– Example: Return on an investment



Drawing from a distribution

• Generally, drawing from a statistical distribution in a 

computer involves two steps:

1. Draw a random uniform y~(0,1)

2. Map to a random variable quantity using the 

inverse cumulative distribution function x~F-1(y)

y

F-1(y)

0 1



Drawing from a distribution: 

resampling

• Suppose we have data that were drawn from 

an unknown distribution

– Can’t sample the distribution directly!

• Approach: Treat the sample as an 

approximation to the population (empirical

distribution), and draw from the sample

• Known as resampling or bootstrapping



Simple bootstrapping

• Would like to know about the properties of a 
sample statistic ϴ = g(X) (e.g. mean)

– Don’t know the distribution of the population, so 
use the data we have to approximate.

1. Draw n samples (with replacement!) from 
data, calculate sample statistic of interest ϴ*.

2. Repeat many (m) times to get m ϴ*

3. The resulting m ϴ* can be treated as samples 
for ϴ.



Fitting a linear model

• Linear model � = �� + �

• Usually, these are fit using a least-squares 

criterion. That means we minimize ∑ 	�
�

� . 

The solution is �� = (���)�����. 

• We often assume that 	�~� 0, �� for all i.

• In R, the lm() function will fit this model

• In SAS, PROC REG will fit this model

• Other criteria are possible, notably maximum 

likelihood



Fitting non-linear models

• In the non-linear case, � =  (�, �) + �

• We can again use a least-squares criterion, or 

possibly some other criterion. Call 

ℎ(�,  �, � ) the objective function.

• Our goal is to minimize this function by 

varying �

• In R you can use optim() or optimize()

• In SAS you can use PROC IML



Checking statistical assumptions

• Fit a linear model…

– Want to check the assumption that

	�~� 0, �� for all i.

• Check on distributional assumption

• Check on homoscedasticity

• Check on independence



Quantile-Quantile plots
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