
Regression
DAAG Chapters 5 and 6



Learning objectives

The overarching objective is to reinforce linear regression concepts,
including:

I Obtaining linear model parameter estimates (including
uncertainty)

I Checking model assumptions

I Outliers, influence, robust regression

I Assessment of predictive power, cross-validation

I Transformations

I Interpretation of model parameters (coefficients)

I Model selection

I Multicollinearity

I Regularisation



Regression

Regression with one predictor

yi = β0 + β1xi + εi

Assumption: given xi , the response yi ∼ N(β0 + β1xi , σ
2), and yi

are independent for all i .
This extends directly to regression with multiple predictors

yi = Xiβ + εi

with equivalent assumptions.
Any statistics package will provide a best fit solution to these
linear models, including standard errors for each βj and statistics
describing the proportion of the total variance in y explained by
the model. In R, we use lm() and in SAS we use PROC REG.



Regression diagnostics

Regression diagnostics are about checking model assumptions and
looking out for influential points.

softbacks.lm <- lm( weight ~ volume, data = softbacks )

summary( softbacks.lm )

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 41.3725 97.5588 0.424 0.686293

volume 0.6859 0.1059 6.475 0.000644

*** --- Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 102.2 on 6 degrees of freedom

Multiple R-squared: 0.8748, Adjusted R-squared: 0.8539

F-statistic: 41.92 on 1 and 6 DF, p-value: 0.0006445



Regression diagnostics

plot( softbacks.lm, which = 1:4 )
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Intervals, tests, robust regression
Once we have the model fit, we can obtain confidence intervals
and do hypothesis testing on model parameters. We can also
obtain prediction intervals for a future observation.
In R, we can use

predict( softbacks.lm

, newdata = data.frame( volume = 1200 )

, interval = "prediction" )

fit lwr upr

864.4035 584.5337 1144.273

predict( softbacks.lm

, newdata = data.frame( volume = 1200 )

, interval = "confidence" )

fit lwr upr

864.4035 738.7442 990.0628

In SAS, PROC REG has the same functionality in its OUTPUT
statement.



Transformations
We have seen several examples where a transformation improves
contrast, linearity, and/or variance properties.
The Box-Cox transformation is a generalized power transformation

y(λ) =

{
yλ−1
λ λ 6= 0

log(y) λ = 0
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Box−Cox transformation for λ = −2, −1, −0.5, 0, 0.5, 1, 2



Suggested steps for multiple regression

I Check the distributions of the dependent and explanatory
variables (skewness, outliers)

I Plot a scatterplot matrix. Look for:

I Non-linearities
I Sufficient contrast
I (near) Collinearity

I Consider whether there are large errors in the explanatory
variables (assumed known)

I Leads to errors in coefficient estimates

I Consider transformations to improve linearity and/or
symmetry of distributions

I In the case of (near) collinearity, consider removing redundant
explanatory variables

I After fitting the model, check residuals, Cook’s distances, and
other diagnostics



Interpreting model coefficients
I When the goal is scientific understanding, we want to

interpret model coefficients
I Data on brain weight, body weight, and litter size of 20 mice

lsize
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> summary(lm( brainwt~ lsize, data = litters))$coef

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.44700 0.00962 46.44 3.39e-20

lsize -0.00403 0.00120 -3.37 3.44e-03

(No consideration of the effect of bodyweight on litter size. With this model,
we might conclude that larger litter size is associated with smaller brain
weight.)

> summary(lm( brainwt~ lsize +bodywt, data = litters))$coef

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.17825 0.07532 2.37 0.03010

lsize 0.00669 0.00313 2.14 0.04751

bodywt 0.02431 0.00678 3.59 0.00228

(Coefficient for litter size measures change in brain weight when body weight is

held constant. That is, for a particular body weight, larger litter size is

associated with larger brain weight.)



Model selection criteria

I Model selection is the process of choosing a model among a
set of candidate models

I Model selection is a combination of pre-defined procedure and
statitstical judgment

I The model selection procedure should be based on the goal of
the analysis (hypothesis testing? estimation? prediction?)

I Examples:

I Hypothesis testing on each coefficient (t-test)
I Total model comparison using hypothesis testing (F-test)
I Total model comparison using information criterion (AIC, BIC)
I Prediction performance on a test set
I Cross validation



Simulation experiment (in book)
The authors did the following experiment:

I Generate 41 vectors of 100 independent random
normally-distributed numbers

I Label the first vector as y , the response, and the remaining as
X , the explanatory variables

I Look for the three x variables that best explain y . How many
are statistically significant?

Cases

All three variables were significant at p < 0.01 1

All three variables significant at p < 0.05 3

Two of three significant at p < 0.05 3

One significant at p < 0.05 3

Total 10

I p-values do not account for variable selection and structural
uncertainties!



Assessing predictive power

I In some cases, we use regression to obtain a model that can
be used for prediction

I How do we decide on a model for prediction?

I We are looking for a model that will minimize
L(ŷ(θ,Xfuture), y(Xfuture))

I If we have the true model, then ŷ() is the same as y() (trivial)
I Do we have the true model? What kinds of errors can we

make?

I Finite sample errors (don’t observe enough data to pin down
θ)

I Structural errors (wrong class of model, wrong covariates)

I Are we using the appropriate criterion?

I Hypothesis testing is likely not the correct choice here
I Prediction error is better



Cross-validation

How can we get a handle on prediction error?

I Divide our sample into a training set and a test set

I Use our training set to obtain a set of prediction models

I Predict the test set using the prediction models and compare

Cross-validation is an extension of this idea

I Divide the data into k sets (folds)

I Leave one fold out, obtain model

I Repeat for each fold

I Average over the k sets of results

You can use cross-validation to do variable selection, but you need
to use another set of data to estimate coefficients, standard errors,
etc.



Multicollinearity

I Explanatory variables that are (nearly) linear combinations of
other explanatory variables are collinear.

I Extreme example is compositional data (fractions of a whole).

I Example from book: 25 specimens of rock

I Percentage by weight of five minerals (albite, blandite, cornite,
daubite, endite)

I Depth at which sample collected
I Porosity

I Note that the composition data has to add to 100% (if we
know four of five, we can calculate the fifth)



Coxite data
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lm(formula = porosity ~ ., data = coxite)

Residuals:

Min 1Q Median 3Q Max

-0.93042 -0.46984 0.02421 0.35219 1.18217

Coefficients:

(1 not defined because of singularities)

Estimate Std. Error t value Pr(>|t|)

(Intercept) -217.74660 253.44389 -0.859 0.401

A 2.64863 2.48255 1.067 0.299

B 2.19150 2.60148 0.842 0.410

C 0.21132 2.22714 0.095 0.925

D 4.94922 4.67204 1.059 0.303

E NA NA NA NA

depth 0.01448 0.03329 0.435 0.668

Residual standard error: 0.6494 on 19 degrees of freedom

Multiple R-squared: 0.9355, Adjusted R-squared: 0.9186

F-statistic: 55.13 on 5 and 19 DF, p-value: 1.185e-10



Variance inflation factor

I The standard errors of regression coefficients are influenced by
correlation with other explanatory variables

I The variance inflation factor measures this effect

I When there is only one covariate in a model, the variance of
the coefficient is

var(β1) =
σ2

sxx
=

σ2∑
(xi − x̄)2

I When additional terms are added, var(β1) increases to
γvar(β1), γ > 1 where γ is the variance inflation factor

I Large values for γ imply strong collinearities



> vif( coxiteAll.lm )

A B C D depth

2717.8000 2485.0000 192.5900 566.1400 3.4166

We probably don’t need both A and B, for example. If we toss out A, we get

> (coxite.lm <- update( coxiteAll.lm, . ~ . - A ))

B C D E depth

6.4294 5.3269 125.7100 89.4420 3.4166

A couple of steps later, we get to

> vif(coxite.lm)

B C

1.0132 1.0132

(it turns out depth has a very weak relationship to porosity.)



Regularisation

I In the book, regularisation is touted as a remedy for
multicollinearity.

I We have also seen cases where the “traditional” methods of
model selection and estimation overfit the data at hand. This
problem is particularly troubling if we want to use our model
to predict.

I In a regression context, regularisation methods apply a penalty
to the coefficients of the regression to avoid overfitting.

I Ridge regression:
∑
β2
j ≤ t. Penalty: minimize RSS + λ

∑
β2
j

I Lasso:
∑
|βj | ≤ t. Penalty: minimize RSS + λ

∑
|βj |

I These methods shrink the coefficients towards zero. The
Lasso will shrink some coefficients all the way to zero,
allowing them to be removed from the model.

I λ is usually selected based on cross-validation to select the
model with the smallest estimated prediction error


