
Extending the linear model
DAAG Chapters 7 and 8



Learning objectives

The linear model framework can be extended in many ways. We
will learn about

I Indicator variables for coding factors

I Fitting multiple lines

I Polynomial regression

I Splines

We will also learn about generalized linear models (glm)

I How the glm differs

I Logistic regression

I Ordinal regression

I Poisson regression



The linear model framework

The multiple linear regression model can be written

y = Xβ + ε

where the distribution for the ε’s is iid Normal.
Critically important is the design matrix X

I Including an intercept

I Coding factors (multiple intercepts)

I Coding interactions (multiple slopes)

I Polynomial regression

I Splines



Coding factors (separate intercepts)
I Factors are categorical variables that may or may not be

ordered.
I In the design matrix, we code factors using 1’s and 0’s
I For example, if we have a factor for eye colour (blue, brown,

other), and the data are:

blue, blue, brown, other, brown, other, blue, brown, blue

X =



1 0 0
1 0 0
1 1 0
1 0 1
1 1 0
1 0 1
1 0 0
1 1 0
1 0 0


X =



1 1 0
1 1 0
1 0 1
1 −1 −1
1 0 1
1 −1 −1
1 1 0
1 0 1
1 1 0


Treatment contrasts Sum (to zero) contrasts



Coding interactions (separate slopes)

I For a data set with:

I Continuous response y
I One three-level factor explanatory variable z
I One continuous explanatory variable x

What models are available?

1. y = β0 (constant)

2. y = β0 + β1x (single line)

3. y = β01 + β02z2 + β03z3 (three constants)

4. y = β01 + β02z2 + β03z3 + β1x (three parallel lines)

5. y = β01 + β02z2 + β03z3 + β11x + β12z2x + β13z3x
(three separate lines)

6. y = β0 + β11x + β12z2x + β13z3x (three lines, one intercept)



Polynomial regression

I Polynomials provide a simple way to model curved
relationships

I Sometimes there is a good theoretical reason to use a
polynomial relationship

I Including higher order terms directly in the design matrix is
one option

I Orthogonal polynomials are a good alternative because the
correlation between model coefficients will be zero

I this means greater numerical stability
I lower-order coefficients won’t change if higher-order

coefficients are removed from the model

I In R, use poly() to specify orthogonal polynomials in a
formula argument

I In SAS, use ORPOL function in PROC IML to generate design
matrix columns



Splines

I Splines extend the idea of polynomial regression

I We do polynomial regression, but piecewise, joining the pieces
at knots

y = β0P0(x) + β1P1(x) + . . .+ βkPk(x)

I The Pi (x) are basis functions. They are polynomial functions
that are sometimes constrained to be non-zero for only certain
values of x .

I Two possible choices for Pi (x) are B-splines and natural
splines (linear beyond the data).

I By adding an error term, these spline functions can be fit
using the linear model framework

I Pi (x) is computed for all x in the data and all i
I These Pi (x) make up the design matrix in the linear model fit



Splines
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A: N−spline, 1 internal knots (d.f. = 2+1)

10 20 30 40 50 60

20
00

60
00

10
00

0

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●
●

●
●●

●

●

●

●

●

●
●

●●

●
●

●
●
●

●

●●

●●

●

●

●

●

●
●
●

●

●

●
●

●

●

●

●
●●

●

●

●
●

●

●

●

●●

●
●

●
●

●

●●

●●

●
●

●

●
●●
●

●

●

●

●
●

●

●

●

●

●
●●

●

●
●

B: N−spline, 2 internal knots (d.f. = 3+1)
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C: Polynomial (d.f. = 2+1)
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D: Polynomial (d.f. = 3+1)



Splines
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Generalized linear models

GLMs extend the linear modelling framework by allowing

I Non-Gaussian errors

I A link function that transforms the linear model response

The linear models we have considered so far had the form

y = Xβ + ε, ε
iid∼ N(0, σ2)

E [y ] = Xβ

The generalized linear model is

f (E [y ]) = Xβ

where f () is the link function. Also

y = E [y ] + ε or y ∼ (E [y ], θ)

but here ε can have a non-Gaussian distribution.



Logistic regression
In binomial logistic regression, the errors are binomial and the link
function is logistic

f (E [y ]) = log

(
E [y ]

1− E [y ]

)
In this context, the E [y ] = p, the binomial probability.
The model for E [y ] is

f (p) = log

(
p

1− p

)
= Xβ

or

p =
exp(Xβ)

1 + exp(Xβ)

and y ∼ Binom(n, p), or y ∼ Bern(p).

I Fit by maximizing likelihood of y as a function of β.

I Model comparison via deviance (−2 log L(y |β̂)).

I Confidence intervals for β using the likelihood.



Ordinal regression

I Ordinal response, link is usually logistic

I Here we look at the cumulative probabilities γj = P(y ≤ j)

log

(
γj

1− γj

)
= ηj − Xβ

I The ηj are cutpoints between the response categories

ηi < ηj for i < j

I Assumption: β-effects are proportional to the odds for all j

γj
1− γj

=
exp(ηj)

exp(Xβ)
or

1− γj
γj

= exp(Xβ) exp(−ηj)

I Or, can include separate βj for each j .



Poisson regression

I Errors are Poisson, link function most commonly log

I Recall that Poisson is for count data that arise from a Poisson
process

I E [y ] = λ, the rate parameter. The model is

f (λ) = log(λ) = Xβ

or
E [y ] = λ = exp(Xβ)

and y ∼ Poisson(λ).

I Note that the Poisson distribution has Var(y) = λ. If we have
over- or under- dispersion, we can relax this requirement and
estimate a dispersion parameter φ (quasipoisson).



Example: Head injuries

I Data: (simulated) patient data that present with head injuries

I Q: Can we identify patients that would be classified as high
risk using available criteria?

I Response: Whether a patient is classified as high risk by a
clinician

I Explanatory variables:

I Whether over age 65
I Amount of amnesia before impact (threshold 30 mins)
I Basal skull fracture present
I Open skull fracture present
I Whether vomiting
I Whether loss of consciousness occurred

I Use logistic regression



Example: Head injuries

Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.34880 0.05612 -24.036 < 2e-16 ***

age.65 0.27891 0.12511 2.229 0.02579 *

amnesia.before 0.03770 0.10382 0.363 0.71652

basal.skull.fracture 0.31854 0.15474 2.059 0.03953 *

loss.of.consciousness 0.36088 0.12553 2.875 0.00404 **

open.skull.fracture 0.33752 0.20753 1.626 0.10387

vomiting 0.76134 0.12595 6.045 1.5e-09 ***

---

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 3460.4 on 3120 degrees of freedom

Residual deviance: 3401.3 on 3114 degrees of freedom

AIC: 3415.3



Example: Head injuries

The model is log
(

p
1−p

)
= Xβ, so p = exp(Xβ)

1+exp(Xβ) .

I At the baseline, Xβ = −1.349 (the model intercept), or
p̂ = 0.206

I What would get us to p = 0.5? We would need exp(Xβ) ≥ 1,
or Xβ ≥ 0

I If a patient is vomiting (β̂ = 0.761), then we also need at
least two of

I Whether over age 65 (β̂ = 0.279)
I Basal skull fracture present (β̂ = 0.319)
I Open skull fracture present (β̂ = 0.338)
I Whether loss of consciousness occurred (β̂ = 0.361)

I If a patient is not vomiting, then even with all other
conditions present, p̂ ≤ 0.5

I Amount of amnesia before impact (threshold 30 mins) has
little to no effect (β̂ = 0.038)


