Extending the linear model DAAG Chapters 7 and 8

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Learning objectives

The linear model framework can be extended in many ways. We will learn about

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Indicator variables for coding factors
- Fitting multiple lines
- Polynomial regression
- Splines

We will also learn about generalized linear models (glm)

- How the glm differs
- Logistic regression
- Ordinal regression
- Poisson regression

The linear model framework

The multiple linear regression model can be written

$$y = X\beta + \epsilon$$

where the distribution for the ϵ 's is iid Normal. Critically important is the design matrix X

- Including an intercept
- Coding factors (multiple intercepts)
- Coding interactions (multiple slopes)
- Polynomial regression
- Splines

Coding factors (separate intercepts)

- Factors are categorical variables that may or may not be ordered.
- In the design matrix, we code factors using 1's and 0's
- For example, if we have a factor for eye colour (blue, brown, other), and the data are:

blue, blue, brown, other, brown, other, blue, brown, blue

Coding interactions (separate slopes)

For a data set with:

- Continuous response y
- One three-level factor explanatory variable z
- One continuous explanatory variable x

What models are available?

1.
$$y = \beta_0$$
 (constant)
2. $y = \beta_0 + \beta_1 x$ (single line)
3. $y = \beta_{01} + \beta_{02}z_2 + \beta_{03}z_3$ (three constants)
4. $y = \beta_{01} + \beta_{02}z_2 + \beta_{03}z_3 + \beta_1 x$ (three parallel lines)
5. $y = \beta_{01} + \beta_{02}z_2 + \beta_{03}z_3 + \beta_{11}x + \beta_{12}z_2x + \beta_{13}z_3x$ (three separate lines)
6. $y = \beta_0 + \beta_{11}x + \beta_{12}z_2x + \beta_{13}z_3x$ (three lines, one intercept)

Polynomial regression

- Polynomials provide a simple way to model curved relationships
- Sometimes there is a good theoretical reason to use a polynomial relationship
- Including higher order terms directly in the design matrix is one option
- Orthogonal polynomials are a good alternative because the correlation between model coefficients will be zero
 - this means greater numerical stability
 - lower-order coefficients won't change if higher-order coefficients are removed from the model
- In R, use poly() to specify orthogonal polynomials in a formula argument
- In SAS, use ORPOL function in PROC IML to generate design matrix columns

Splines

- Splines extend the idea of polynomial regression
- We do polynomial regression, but piecewise, joining the pieces at knots

$$y = \beta_0 P_0(x) + \beta_1 P_1(x) + \ldots + \beta_k P_k(x)$$

- ► The P_i(x) are basis functions. They are polynomial functions that are sometimes constrained to be non-zero for only certain values of x.
- Two possible choices for P_i(x) are B-splines and natural splines (linear beyond the data).
- By adding an error term, these spline functions can be fit using the linear model framework
 - P_i(x) is computed for all x in the data and all i
 - These $P_i(x)$ make up the design matrix in the linear model fit

Splines

◆ロ ▶ ◆昼 ▶ ◆ 臣 ▶ ◆ 臣 ● のへで

Splines

◆□ ▶ ◆□ ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○ のへ(?)

Generalized linear models

GLMs extend the linear modelling framework by allowing

Non-Gaussian errors

► A *link function* that transforms the linear model response The linear models we have considered so far had the form

$$y = X\beta + \epsilon, \ \epsilon \stackrel{\mathrm{iid}}{\sim} N(0, \sigma^2)$$

$$E[y] = X\beta$$

The generalized linear model is

$$f(E[y]) = X\beta$$

where f() is the link function. Also

$$y = E[y] + \epsilon$$
 or $y \sim (E[y], \theta)$

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ うへつ

but here ϵ can have a non-Gaussian distribution.

Logistic regression

In binomial logistic regression, the errors are binomial and the link function is logistic

$$f(E[y]) = \log\left(\frac{E[y]}{1 - E[y]}\right)$$

In this context, the E[y] = p, the binomial probability. The model for E[y] is

$$f(p) = \log\left(\frac{p}{1-p}\right) = X\beta$$

or

$$p = rac{\exp(Xeta)}{1 + \exp(Xeta)}$$

and $y \sim \operatorname{Binom}(n, p)$, or $y \sim \operatorname{Bern}(p)$.

- Fit by maximizing likelihood of y as a function of β .
- Model comparison via deviance $(-2 \log L(y|\hat{\beta}))$.
- Confidence intervals for β using the likelihood.

Ordinal regression

- Ordinal response, link is usually logistic
- Here we look at the cumulative probabilities $\gamma_j = P(y \le j)$

$$\log\left(\frac{\gamma_j}{1-\gamma_j}\right) = \eta_j - \boldsymbol{X}\beta$$

• The η_i are *cutpoints* between the response categories

$$\eta_i < \eta_j$$
 for $i < j$

Assumption: β-effects are proportional to the odds for all j

$$rac{\gamma_j}{1-\gamma_j} = rac{\exp(\eta_j)}{\exp(Xeta)} \qquad ext{or} \qquad rac{1-\gamma_j}{\gamma_j} = \exp(Xeta)\exp(-\eta_j)$$

Or, can include separate β_j for each j.

Poisson regression

- Errors are Poisson, link function most commonly log
- Recall that Poisson is for count data that arise from a Poisson process
- $E[y] = \lambda$, the rate parameter. The model is

$$f(\lambda) = \log(\lambda) = X\beta$$

or

$$E[y] = \lambda = \exp(X\beta)$$

and $y \sim \text{Poisson}(\lambda)$.

Note that the Poisson distribution has Var(y) = λ. If we have over- or under- dispersion, we can relax this requirement and estimate a dispersion parameter φ (quasipoisson).

Example: Head injuries

- Data: (simulated) patient data that present with head injuries
 - Q: Can we identify patients that would be classified as high risk using available criteria?
- Response: Whether a patient is classified as *high risk* by a clinician
- Explanatory variables:
 - Whether over age 65
 - Amount of amnesia before impact (threshold 30 mins)

- Basal skull fracture present
- Open skull fracture present
- Whether vomiting
- Whether loss of consciousness occurred
- Use logistic regression

Example: Head injuries

	Estimate	Std. Error	z value	Pr(z)	
(Intercept)	-1.34880	0.05612	-24.036	< 2e-16	***
age.65	0.27891	0.12511	2.229	0.02579	*
amnesia.before	0.03770	0.10382	0.363	0.71652	
basal.skull.fracture	0.31854	0.15474	2.059	0.03953	*
loss.of.consciousness	0.36088	0.12553	2.875	0.00404	**
open.skull.fracture	0.33752	0.20753	1.626	0.10387	
vomiting	0.76134	0.12595	6.045	1.5e-09	***

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

(Dispersion parameter for binomial family taken to be 1) Null deviance: 3460.4 on 3120 degrees of freedom Residual deviance: 3401.3 on 3114 degrees of freedom AIC: 3415.3

Example: Head injuries

The model is $\log\left(\frac{p}{1-p}\right) = X\beta$, so $p = \frac{\exp(X\beta)}{1+\exp(X\beta)}$.

- At the baseline, $X\beta = -1.349$ (the model intercept), or $\hat{p} = 0.206$
- ▶ What would get us to p = 0.5? We would need $\exp(X\beta) \ge 1$, or $X\beta \ge 0$
- ▶ If a patient is vomiting ($\hat{\beta} = 0.761$), then we also need at least two of
 - Whether over age 65 ($\hat{eta} = 0.279$)
 - Basal skull fracture present ($\hat{eta} = 0.319$)
 - Open skull fracture present ($\hat{eta} = 0.338$)
 - Whether loss of consciousness occurred ($\hat{eta}=0.361$)
- ▶ If a patient is not vomiting, then even with all other conditions present, $\hat{p} \leq 0.5$
- ► Amount of amnesia before impact (threshold 30 mins) has little to no effect ($\hat{\beta} = 0.038$)