Extending the linear model
DAAG Chapters 7 and 8



Learning objectives

The linear model framework can be extended in many ways. We
will learn about

» Indicator variables for coding factors

» Fitting multiple lines
» Polynomial regression
> Splines

We will also learn about generalized linear models (glm)
» How the glm differs
> Logistic regression

v

Ordinal regression

v

Poisson regression



The linear model framework

The multiple linear regression model can be written
y=XB+¢

where the distribution for the €'s is iid Normal.
Critically important is the design matrix X

» Including an intercept

» Coding factors (multiple intercepts)
» Coding interactions (multiple slopes)
» Polynomial regression

» Splines



Coding factors (separate intercepts)

» Factors are categorical variables that may or may not be
ordered.

> In the design matrix, we code factors using 1's and Q's

» For example, if we have a factor for eye colour (blue, brown,
other), and the data are:

blue, blue, brown, other, brown, other, blue, brown, blue

1 0 07 1 1 07
100 1 1 0
110 1 0 1
1 01 1 -1 -1
X=(110 X=(1 0 1
1 01 1 -1 -1
100 1 1 0
110 1 0 1

[ 1 0 0 ] 1 1 0

Treatment contrasts Sum (to zero) contrasts



Coding interactions (separate slopes)

» For a data set with:

» Continuous response y
> One three-level factor explanatory variable z
» One continuous explanatory variable x

What models are available?

L y=0o (constant)
2. y = Po+ bix (single line)
3.y = Po1 + Bo2z2 + Po3zs (three constants)
4.y = Por + Bo2z2 + Pozzs + Pix (three parallel lines)
5.y = Po1 + Bo2z2 + Po3zz + Prix + fr2zax + P13zax

(three separate lines)

6. y = Bo + S11x + Pi12zex + [B13z3x  (three lines, one intercept)



Polynomial regression

>

Polynomials provide a simple way to model curved
relationships

Sometimes there is a good theoretical reason to use a
polynomial relationship

Including higher order terms directly in the design matrix is
one option

Orthogonal polynomials are a good alternative because the
correlation between model coefficients will be zero

» this means greater numerical stability
> lower-order coefficients won't change if higher-order
coefficients are removed from the model

In R, use poly() to specify orthogonal polynomials in a
formula argument

In SAS, use ORPOL function in PROC IML to generate design
matrix columns



Splines

Splines extend the idea of polynomial regression
We do polynomial regression, but piecewise, joining the pieces
at knots

y = BoPo(x) + B1P1(x) + ... + Bk Pi(x)

The P;(x) are basis functions. They are polynomial functions
that are sometimes constrained to be non-zero for only certain
values of x.

Two possible choices for P;(x) are B-splines and natural
splines (linear beyond the data).

By adding an error term, these spline functions can be fit
using the linear model framework

» P;(x) is computed for all x in the data and all i
» These P;(x) make up the design matrix in the linear model fit



Splines

Resistance (ochms)
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Splines

Spline basis functions

Fitted curve (ohms)
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Generalized linear models

GLMs extend the linear modelling framework by allowing
» Non-Gaussian errors
» A link function that transforms the linear model response

The linear models we have considered so far had the form

y =XB+e, el N(O,az)

Ely] = X5
The generalized linear model is
fF(Ely]) = X8

where f() is the link function. Also

y=Elyl+e or y~(E[yl,0)

but here € can have a non-Gaussian distribution.



Logistic regression
In binomial logistic regression, the errors are binomial and the link
function is logistic

AEDD = 1og (T 21 )

In this context, the E[y] = p, the binomial probability.
The model for E[y] is

f(p) = log <1fp> =X

p— PXP)
1+ exp(Xp)
and y ~ Binom(n, p), or y ~ Bern(p).
» Fit by maximizing likelihood of y as a function of 3.
» Model comparison via deviance (—2log L(y|3)).
» Confidence intervals for 8 using the likelihood.

or



Ordinal regression

» Ordinal response, link is usually logistic
> Here we look at the cumulative probabilities v; = P(y < j)

v
Iog< )zn-—Xﬁ
11— J

» The 7, are cutpoints between the response categories

ni <mjfori<j

» Assumption: [-effects are proportional to the odds for all j

Y exp(n;) 1—v;
= or —= = exp(X0) exp(—n;
T—  exp(XB) 7 (X5) exp(=n;)

» Or, can include separate §3; for each j.



Poisson regression

» Errors are Poisson, link function most commonly log

» Recall that Poisson is for count data that arise from a Poisson
process

» E[y] = A, the rate parameter. The model is
f(A) = log(A) = Xf8

or
Ely] = A = exp(X5)
and y ~ Poisson(2).
» Note that the Poisson distribution has Var(y) = A. If we have

over- or under- dispersion, we can relax this requirement and
estimate a dispersion parameter ¢ (quasipoisson).



Example: Head injuries

» Data: (simulated) patient data that present with head injuries

» Q: Can we identify patients that would be classified as high
risk using available criteria?

v

Response: Whether a patient is classified as high risk by a
clinician

v

Explanatory variables:

Whether over age 65

Amount of amnesia before impact (threshold 30 mins)
Basal skull fracture present

Open skull fracture present

Whether vomiting

Whether loss of consciousness occurred

vV vy vy VY VvYY

» Use logistic regression



Example: Head injuries

Estimate Std.

(Intercept) -1.34880
age.65 0.27891
amnesia.before 0.03770
basal.skull.fracture 0.31854
loss.of.consciousness 0.36088
open.skull.fracture 0.33752
vomiting 0.76134

O O O O O OO

Error z value Pr(>|z|)

.05612 -24.
.12511
.10382
.15474
.12553
.20753
.12595

D~ NN O N

036

.229
.363
.059
.875
.626
.045

<

= O O O O O

2e-16

.02579
.71652
.03953
.00404
.10387
.5e-09

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 3460.4 on 3120 degrees of freedom

Residual deviance: 3401.3 on 3114 degrees of freedom

AIC: 3415.3
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Example: Head injuries

The model is log (ﬁ) = XS, s0 p= exp(XB)

Ttexp(XB)’
> At the baseline, X3 = —1.349 (the model intercept), or
p = 0.206
» What would get us to p = 0.57 We would need exp(Xj3) > 1,
or X >0
> If a patient is vomiting (3 = 0.761), then we also need at
least two of

A

Whether over age 65 (3 = 0.279)
Basal skull fracture present (/5 = 0.319)

N

Open skull fracture present (5 = 0.338)

N

Whether loss of consciousness occurred (3 = 0.361)

vV vy vVvYy

» If a patient is not vomiting, then even with all other
conditions present, p < 0.5

» Amount of amnesia before impact (threshold 30 mins) has

A

little to no effect (5 = 0.038)



