Regression trees DAAG Chapter 11

Learning objectives

In this section, we will learn about regression trees.

- What is a regression tree?
- What types of problems can be addressed with regression trees?

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

- How complex a tree?
 - Choosing the number of splits
 - Pruning
- Random forests

Spam email example with 6 explanatory variables:

- 1. crl.tot (total length of words in capitals)
- 2. dollar (percentage of characters that are \$)
- 3. bang (percentage of characters that are !)
- 4. money (percentage of words that are 'money')
- 5. n000 (percentage of words with 000)
- 6. make (percentage of words that are 'make')

There are actually many more variables that were omitted.

Decision trees

Trees are a very flexible tool

Types of problems that can be addressed:

- 1. Regression with a continous response
- 2. Regression with a binary response
- 3. Classification with ordered outcomes
- 4. Classification with unordered outcomes
- 5. Survival analysis, etc.

Trees are best for large datasets with unknown structure.

- Make very weak assumptions
- Have low power to detect

Spam example

Spam example: output

```
Classification tree:
rpart(formula = yesno ~ crl.tot + dollar + bang
+ money + n000 + make, data = spam7, method = "class")
```

Variables actually used in tree construction: [1] bang crl.tot dollar

Root node error: 1813/4601 = 0.39404

n= 4601

	CP	nsplit	rel	error	xerror	xstd
1	0.476558	0	1	.00000	1.00000	0.018282
2	0.075565	1	0	.52344	0.54661	0.015380
3	0.011583	3	0	.37231	0.38886	0.013477
4	0.010480	4	0	.36073	0.39051	0.013500
5	0.010000	5	0	.35025	0.38334	0.013398

Splitting rules

- Minimize deviance (residual sum of squares)
 - Choose the split that results in the smallest possible deviance
- Minimize Gini index $\sum_{j \neq k} p_{ij} p_{ik} = 1 \sum_k p_{ik}^2$
 - leaf *i*, number of observations in category *k* is n_{ik}

•
$$p_{ik} = n_{ik} / \sum_i n_{ik}$$

- Minimize information criterion $D_i = \sum_k n_{ik} \log(p_{ik})$
- Often additional rules are imposed such as a minimum leaf group size

Determining tree size

- We can grow the tree indefinitely because each split will (generally) improve the fit
 - Need some way to determine when to stop
- Cross validation
- Complexity parameter (c_p) trades off complexity (cost) with improved fit (large c_p, small tree)
 - c_p is a proxy for the number of splits
 - Fit a tree that is more complex than optimal
 - Prune the tree back to achieve an optimal tree by setting c_p and minimizing the cross-validated relative error
 - Rule of thumb: minimum error + 1 standard deviation

Optimal spam tree

• Previous c_p table had minimum $c_p = 0.01$

```
Classification tree:
rpart(formula = yesno ~ crl.tot + dollar + bang
+ money + n000 + make, data = spam7, method = "class")
```

Variables actually used in tree construction: [1] bang crl.tot dollar

Root node error: 1813/4601 = 0.39404

	CP	nsplit	rel	error	xerror	xstd
1	0.476558	0	1	.00000	1.00000	0.018282
2	0.075565	1	0	.52344	0.54661	0.015380
3	0.011583	3	0	.37231	0.38886	0.013477
4	0.010480	4	0	.36073	0.39051	0.013500
5	0.010000	5	0	.35025	0.38334	0.013398

Optimal spam tree

	CP	nsplit	rel error	xerror	xstd	
1	0.4765582	0	1.00000	1.00000	0.018282	
2	0.0755654	1	0.52344	0.54992	0.015414	
3	0.0115830	3	0.37231	0.38389	0.013406	
4	0.0104799	4	0.36073	0.37728	0.013310	
5	0.0063431	5	0.35025	0.36569	0.013139	
6	0.0055157	10	0.31660	0.35135	0.012921	
7	0.0044126	11	0.31109	0.33922	0.012732	
8	0.0038610	12	0.30667	0.33039	0.012590	*min+1se*
9	0.0027579	16	0.29123	0.32101	0.012436	*min*
10	0.0022063	17	0.28847	0.32377	0.012482	
11	0.0019305	18	0.28627	0.32432	0.012491	
12	0.0016547	20	0.28240	0.32874	0.012563	
13	0.0010000	25	0.27413	0.33039	0.012590	

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Random forests

- Large number of bootstrap samples are used to grow trees independently
- Grow each tree by:
 - Taking a bootstrap sample of the data
 - At each node, a subset of the variables are selected at random. The best split on this subset is used to split the node.
 - There is no pruning. Trees are limited by a minimum size at terminal nodes and/or the maximum number of total nodes
- Out-of-bag prediction for each observation is done by majority vote across trees that didn't include that sample
- Tuning parameter: the number of variables that are randomly sampled at each split

Single trees vs random forests

- Random forests do not provide a unique tree the entire forest is used for classification by majority vote
 - Single trees require specification of a unique model matrix
- Very little tuning in random forests
 - Cost parameter controls complexity of single tree
- Accuracy for complex data sets can be much better using a random forest
- Random forests are much more computationally expensive

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Random spam forest

```
Call: randomForest(formula = yesno ~ ., data = spam7,
importance = TRUE)
Type of random forest: classification
Number of trees: 500
No. of variables tried at each split: 2
```

OOB estimate of error rate: 11.8%

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Confusion matrix:

	n	У	class.error
n	2647	141	0.05057389
у	402	1411	0.22173194