Multivariate analysis DAAG Chapter 12

Learning objectives

In this section, we will learn some basic approaches to multivariate analysis.

- Principal components analysis
 - What is principal components analysis?
 - What does principal components analysis do?
 - How can principal components analysis be used?
- Multi-dimensional scaling (MDS)
 - What is a distance measure?
 - What are Euclidean, Manhattan, Canberra distances?

- What does MDS do?
- How can MDS be used?

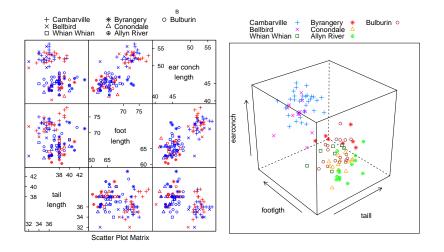
Multivariate analysis: Motivating problem

Possum morphology data. 104 possums trapped at seven sites in Australia.

- sex
- age
- head length
- skull width
- total length
- tail length
- foot length
- ear conch length
- eye measurement
- chest girth
- belly girth

How can we analyze these data to uncover the patterns that exist?

Plots of possum data



◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 の々で

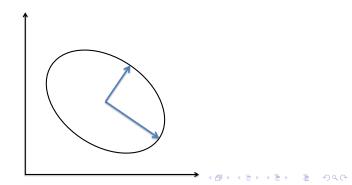
Principal components analysis

For the possum data, we have 9 morphological measurements.

- This is a lot to visualize.
- Also, there is no "response" variable
- How can we uncover structure in these data?

Principal components analysis creates new variables (components) using linear combinations of the existing variables.

- ▶ The first component is chosen to explain as much variation as possible
- Subsequent components are chosen in the same way
- Components are orthogonal



Principal components on possums

Importance of components:

	Comp.1	Comp.2	Comp.3	Comp.4 Comp.5
Standard deviation	6.800	5.033	2.6993	2.1601 1.7372
Proportion of Variance	0.498	0.273	0.0785	0.0503 0.0325
Cumulative Proportion	0.498	0.771	0.8495	0.8998 0.9323
	Comp.6	Comp.7	Comp.8	Comp.9
Standard deviation	-	-	-	Comp.9 0.91696
Standard deviation Proportion of Variance	1.5989	1.2860	1.1111	0.91696

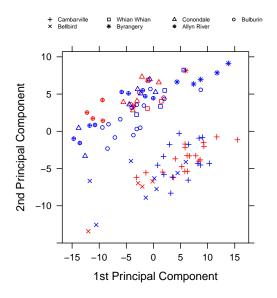
(ロ)、(型)、(E)、(E)、 E) の(の)

Principal components on possums

Loadings:

0												
	Comp.1	Comp.2	Comp.3	Comp.4	Comp.5							
hdlngth	0.413	0.282	0.339	-0.185	0.695							
skullw	0.296	0.269	0.540	-0.338	-0.519							
totlngth	0.518	0.315	-0.648	-0.156								
taill		0.251	-0.350		-0.194							
footlgth	0.514	-0.468			-0.336							
earconch	0.309	-0.650			0.249							
eye												
chest	0.219		0.175	0.174	-0.177							
belly	0.246	0.178	0.134	0.891								
	Comp.6	Comp.7	Comp.8	Comp.9								
hdlngth	0.277		-0.184									
skullw	-0.276	0.259	0.112									
totlngth	-0.226	-0.145	0.336									
taill		0.437	-0.753	0.106								
footlgth	0.633											
earconch	-0.584	0.208	-0.172									
eye												
chest	-0.189	-0.763	-0.404	0.267								
belly	-0.102	0.239	0.144									
						< • •	< 🗗 >	<.≣	•	$\equiv \ast^{-}$	æ	996

Principal components on possums



◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Uses of principal components

Description of patterns in high-dimensional data

- Direct interpretation of components
- Graphical display using components
- Grouping/clustering
- Transformation for subsequent statistical analysis
 - Use components as explanatory variables in regression
 - Good for summarizing the effects of many covariates

- Avoid problems with multicollinearity
- ► Use first component as response variable in regression

Multidimensional scaling

We have seen how to use principal components analysis to display multivariate information in fewer dimensions.

- Principal components analysis is a specific version of a more general class of methods called multidimensional scaling (MDS)
- In MDS, we take multivariate data and display them in fewer dimensions, doing our *best* to maintain the distance between points
- Classical MDS with Euclidean distance is equivalent to the principal components representation
- However, we can extend the lower-dimensional representation in two ways:
 - 1. Use a different distance (or *dissimilarity*) metric.
 - 2. Use a different criteria for ordination (display of objects).

Distance or dissimilarity metrics

Euclidean distance

$$d_{ij} = \sqrt{(x_{i1} - x_{j1})^2 + (x_{i2} - x_{j2})^2 + \ldots + (x_{ip} - x_{jp})^2}$$

Manhattan distance

$$d_{ij} = |x_{i1} - x_{j1}| + |x_{i2} - x_{j2}| + \ldots + |x_{ip} - x_{jp}|$$

Canberra distance

$$d_{ij} = \frac{|x_{i1} - x_{j1}|}{|x_{i1} + x_{j1}|} + \frac{|x_{i2} - x_{j2}|}{|x_{i2} + x_{j2}|} + \dots + \frac{|x_{ip} - x_{jp}|}{|x_{ip} + x_{jp}|}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

where all $x_{..} \ge 0$.

Ordination methods

- Classical MDS
 - Distances are treated as Euclidean.
 - Find the lower-dimensional representation that best preserves distances.
- Sammon method
 - Similar to classical MDS.
 - Minimize weighted sum of squared differences between dissimilarities and representation distances.
 - Weights are proportional to dissimilarities (more dissimilar = more weight).
- Kruskal's non-metric MDS
 - Dissimilarities are allowed a monotonic transformation
 - Only the ranks of the dissimilarities matter

• Minimize stress
$$S = \sqrt{\frac{\sum_i (d_i - r_i)^2}{\sum d_i^2}}$$
 where

- *d_i* are the input dissimilarities (transformed)
- ► r_i are the output representation (Euclidean) distances

MDS example

Data are for 47 swiss provinces circa 1888 (undergoing demographic transition). Variables are proportion of population (agricultural, education, religion, infant mortality,...).

