
Multivariate analysis
DAAG Chapter 12



Learning objectives

In this section, we will learn some basic approaches to multivariate
analysis.

I Principal components analysis

I What is principal components analysis?
I What does principal components analysis do?
I How can principal components analysis be used?

I Multi-dimensional scaling (MDS)

I What is a distance measure?
I What are Euclidean, Manhattan, Canberra distances?
I What does MDS do?
I How can MDS be used?



Multivariate analysis: Motivating problem

Possum morphology data. 104 possums trapped at seven sites in
Australia.

I sex

I age

I head length

I skull width

I total length

I tail length

I foot length

I ear conch length

I eye measurement

I chest girth

I belly girth

How can we analyze these data to uncover the patterns that exist?



Plots of possum data
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Principal components analysis
For the possum data, we have 9 morphological measurements.

I This is a lot to visualize.
I Also, there is no “response” variable
I How can we uncover structure in these data?

Principal components analysis creates new variables (components)
using linear combinations of the existing variables.

I The first component is chosen to explain as much variation as possible
I Subsequent components are chosen in the same way
I Components are orthogonal



Principal components on possums

Importance of components:

Comp.1 Comp.2 Comp.3 Comp.4 Comp.5

Standard deviation 6.800 5.033 2.6993 2.1601 1.7372

Proportion of Variance 0.498 0.273 0.0785 0.0503 0.0325

Cumulative Proportion 0.498 0.771 0.8495 0.8998 0.9323

Comp.6 Comp.7 Comp.8 Comp.9

Standard deviation 1.5989 1.2860 1.1111 0.91696

Proportion of Variance 0.0275 0.0178 0.0133 0.00906

Cumulative Proportion 0.9598 0.9776 0.9909 1.00000



Principal components on possums

Loadings:

Comp.1 Comp.2 Comp.3 Comp.4 Comp.5

hdlngth 0.413 0.282 0.339 -0.185 0.695

skullw 0.296 0.269 0.540 -0.338 -0.519

totlngth 0.518 0.315 -0.648 -0.156

taill 0.251 -0.350 -0.194

footlgth 0.514 -0.468 -0.336

earconch 0.309 -0.650 0.249

eye

chest 0.219 0.175 0.174 -0.177

belly 0.246 0.178 0.134 0.891

Comp.6 Comp.7 Comp.8 Comp.9

hdlngth 0.277 -0.184

skullw -0.276 0.259 0.112

totlngth -0.226 -0.145 0.336

taill 0.437 -0.753 0.106

footlgth 0.633

earconch -0.584 0.208 -0.172

eye 0.195 0.242 0.942

chest -0.189 -0.763 -0.404 0.267

belly -0.102 0.239 0.144



Principal components on possums

1st Principal Component
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Uses of principal components

I Description of patterns in high-dimensional data

I Direct interpretation of components
I Graphical display using components
I Grouping/clustering

I Transformation for subsequent statistical analysis

I Use components as explanatory variables in regression

I Good for summarizing the effects of many covariates
I Avoid problems with multicollinearity

I Use first component as response variable in regression



Multidimensional scaling

We have seen how to use principal components analysis to display
multivariate information in fewer dimensions.

I Principal components analysis is a specific version of a more
general class of methods called multidimensional scaling
(MDS)

I In MDS, we take multivariate data and display them in fewer
dimensions, doing our best to maintain the distance between
points

I Classical MDS with Euclidean distance is equivalent to the
principal components representation

I However, we can extend the lower-dimensional representation
in two ways:

1. Use a different distance (or dissimilarity) metric.
2. Use a different criteria for ordination (display of objects).



Distance or dissimilarity metrics

I Euclidean distance

dij =
√

(xi1 − xj1)2 + (xi2 − xj2)2 + . . . + (xip − xjp)2

I Manhattan distance

dij = |xi1 − xj1|+ |xi2 − xj2|+ . . . + |xip − xjp|

I Canberra distance

dij =
|xi1 − xj1|
|xi1 + xj1|

+
|xi2 − xj2|
|xi2 + xj2|

+ . . . +
|xip − xjp|
|xip + xjp|

where all x.. ≥ 0.



Ordination methods

I Classical MDS

I Distances are treated as Euclidean.
I Find the lower-dimensional representation that best preserves

distances.

I Sammon method

I Similar to classical MDS.
I Minimize weighted sum of squared differences between

dissimilarities and representation distances.
I Weights are proportional to dissimilarities (more dissimilar =

more weight).

I Kruskal’s non-metric MDS

I Dissimilarities are allowed a monotonic transformation

I Only the ranks of the dissimilarities matter

I Minimize stress S =
√∑

i (di−ri )2∑
d2
i

where

I di are the input dissimilarities (transformed)
I ri are the output representation (Euclidean) distances



MDS example

Data are for 47 swiss provinces circa 1888 (undergoing
demographic transition). Variables are proportion of population
(agricultural, education, religion, infant mortality,...).
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Swiss provincial data ca. 1888: Sammon
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Swiss provincial data ca. 1888: Kruskal


