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Abstract
Solar activity can have appreciable damaging effects on Earth-based power transmission systems.

Solar storms in particular cause large variations in Earth’s magnetic field, inducing current in trans-
mission lines and causing damage to sensitive power transformers and other equipment. Power
companies are interested in predicting when such storms will occur in order to mitigate damages,
but current forecast horizons are only on the order of days. We present a forecasting approach based
on the hypothesis that subsurface stresses initiate solar flare events, which can result in coronal
mass ejections and solar storms at Earth. Our approach uses multitaper spectral estimates of solar
gravity modes to forecast a cumulative solar stress index using a very simple state-space model.
In retrospective analysis, this stress index was found to be correlated with variance in log X-ray
data measured near Earth by GOES spacecraft. Using this index, we generated a six month quali-
tative forecast of the likelihood of large flare events beginning November 1, 2013. We discuss the
performance of our forecast and its utility for management of power transmission systems over an
extended time horizon.
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Key points

• Solar gravity mode estimates were obtained from ACE spacecraft measurements.

• Weekly solar flare activity was forecast using gravity mode estimates.

• The forecast horizon is limited to about six months, perhaps less.

1. Introduction

It is well known that solar activity, and in particular solar storms, can have an effect on the
operations of many man-made systems such as electric power transmission, telecommuni-
cations, and spacecraft. The authorities that manage electric power transmission systems
understandably have a keen interest in knowing when solar storms will occur to manage
risks. Current forecasting approaches rely on studies of magnetic field patterns in and
around active solar regions, (e.g. Georgoulis 2013; Gao et al. 2014; Reinard et al. 2010;
González Hernández 2013) and focus on the timing and magnitude of solar flares emit-
ted from a given active region. Because of the approach, such forecasts are limited to the
lifetime of the solar active region, generally on the order of days to weeks.

This paper describes our attempt at predicting solar flare activity, as a precursor to
damaging solar storms, over a time horizon of approximately six months. The longer time
horizon requires a different approach to prediction of events. Our hypothesis is that solar
gravity modes, which are believed to persist for at least thousands of years (Christensen-
Dalsgaard et al. 1974), are indirect drivers of periods of high solar flare activity. The recent
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finding of Ruzmaikin et al. (2011) that fast coronal mass ejections, which are often asso-
ciated with solar flare activity, are clustered in time supports the idea that flare events are
forced periodically. In addition, DJ Thomson observed that solar gravity mode reconstruc-
tions using Ulysses spacecraft data were associated with the Bastille Day event of July 14,
2000 (unpublished data).

Solar flares are caused by magnetic reconnection in active regions. Active regions are
subject to forcing by subsurface mixing processes (Komm et al. 2013), which in turn are
modulated by solar oscillations, in particular gravity modes. Solar gravity modes persist for
much longer than our forecast horizon, potentially providing a reliable forecasting mecha-
nism.

An outline of our approach is:

1. Estimate solar gravity modes (section 2.1)

2. Forecast a solar gravity mode time series (section 2.1)

3. Using the solar gravity mode series as input, forecast solar flare activity (section 2.2)

Solar gravity mode estimation (1.) is in itself a challenging proposition. Gravity mode
detections have been made previously using spacecraft data (Thomson et al. 1995), but
this approach is not without controversy (Appourchaux et al. 2010). We find that using
magnetic field data from the ACE spacecraft and carefully considered spectrum estimation
techniques, we are able to resolve a large amount of structure in the solar gravity mode
band. However, factors such as frequency drift, the orbital geometry of the spacecraft, and
non-stationary intermediate processes present a challenge and limit the forecast horizon.
Thankfully, generating a forecast time series from gravity mode estimates (2.) is a simple
operation.

Once the gravity mode time series has been forecast, we hypothesize that it is the total
power (variance) in the series that is of importance for solar flare activity. Using solar
gravity mode variance as our measure of solar stress, we consider two possible mechanisms
for the relationship between stress and flare activity (3.): a direct (linear) relationship; and
a simple cumulative stress/release mechanism. We find that the cumulative stress/release
mechanism has statistically significant predictive power for near-Earth X-ray variation in
retrospective analysis (section 2.3). Based on this finding, we generated a qualitative flare
activity forecast for the period from 1 November 2013 to 10 May 2014 which predicted
flare activity, albeit with declining accuracy over the forecast period.

2. Methods

2.1 Estimation and forecasting of solar gravity modes

We estimated the frequencies, phases, and amplitudes of solar gravity modes (g-modes)
using magnetic field data collected by the ACE spacecraft. Because g-modes are spher-
ical harmonics, they should appear as sinusoidal in the absence of interfering processes.
We found that there was a large amount of structure in the g-mode band, consistent with
previous studies (Thomson et al. 1995, 2001). We assume that the observed structure is
indicative of the underlying solar g-mode process – in particular, we assume that signals in
the g-mode band with larger estimated amplitudes contribute more to solar stress and sub-
sequent flare events than signals with smaller estimated amplitudes. We also assume that
signals which appear periodic are the result of g-modes. Thus, when determining the g-
mode signal, we chose those frequencies in the estimated spectrum that were both periodic
and had large associated amplitudes.



Figure 1: Spectrum of ACE magnetic field data (normal component) calculated using the
multitaper method with time bandwidth parameter NW = 4 and K = 7 tapers over the
time interval from January 1, 2013 to July 9, 2013.

We began by estimating the spectrum of the ACE magnetic field (normal component).
Exploratory analysis suggested that an estimation period of longer than approximately six
months resulted in degraded gravity mode forecasts in retrospective analysis. Thus, we
chose an estimation period of 189 days (7 solar rotation cycles) when estimating spectra.
Spectra were estimated using the multitaper spectrum estimator (Thomson 1982).

Returning to our original hypothesis that g-modes are drivers of solar flare events, we
focus on those spectrum frequencies that are estimated to be both sinusoidal and to have
significant amplitude. To establish a given signal as sinusoidal, we used the multitaper F-
test (Thomson 1982). To establish the significance of a given signal amplitude, we used χ2

quantiles of the estimated variance of the spectrum. Imagining the spectrum as a mixture
of a white noise process and line components (periodic signals at a single frequency), a line
component would manifest as an unusually large estimated variance.

In order to satisfy the mixture assumption, the ACE magnetic field spectra required
some preliminary adjustment due to an obvious red noise background (Figure 1). Assum-
ing that a given ACE magnetic field spectrum is a mixture of a noise process and a large
number of signal processes, our goal is to adjust the noise process so that it is approximately
white while leaving the signal processes intact. This is sometimes called a post-whitening
approach (Thomson 2000).

Given a multitaper spectrum estimate Ŝ(f) using K tapers, we partition the set of
frequencies at which the spectrum estimates were obtained into bands [fb, fb+1) where

fb+1 − fb = 10µHz

for all b in the theoretical g-mode band. Let f∗ ∈ [fb, fb+1) be a frequency in band b. We
fit a quadratic trend to the log spectrum in the band and subtract this trend, obtaining

Ŝres(f
∗) = Ŝ(f∗)− exp {β̂0,b + β̂1,bf

∗ + β̂2,bf
∗2},

where β̂0,b, β̂1,b, and β̂2,b are obtained by a least-squares fit over all f∗ ∈ [fb, fb+1). We
now assume that the resulting reshaped within-band spectrum Ŝres is composed of a mixture



Figure 2: Example standardized spectrum on the interval 200µHz and 210µHz. The 90th

percentile of a χ2
14 is shown.

of approximately white noise and signal. However, the scale of the white noise process is
not known and must be estimated. Multitaper spectrum estimates are χ2

2K distributed for
a white noise process with variance equal to one. To estimate the scale of the white noise
process, we matched the 10th percentile of the estimated reshaped spectrum Ŝres to the 10th

percentile of a χ2
2K distribution. Within band b,

Ŝw(f
∗) =

Ŝres(f
∗)

Ŝ0.10/χ2
2K,0.10

(1)

where Ŝ0.10 is the 10th percentile of Ŝres. We chose the 10th percentile for matching
because it is unlikely that the high amplitude signal processes we are interested in will
affect the value of the 10th percentile Ŝres within any 10µHz band. Having scaled the
spectrum appropriately, signal components can be identified by comparison to quantiles of
the χ2

2K distribution. Figure 2 depicts a critical value at the 90% level.
To categorize frequencies in the band that are gravity mode signals, we select those f∗

where:

1. Ŝw(f∗) > χ2
2K,1−α1

, and

2. The multitaper F-test is significant at level α2.

We used α1 = α2 = 0.1 to define signals in the g-mode band, and denote their fre-
quencies as {f ′0, f ′1, . . . , f ′n}, their phases as {φ0, φ1, . . . , φn}, and their amplitudes as
{A0, A1, . . . , An}, where n is the total number of g-mode signals identified across all
10µHz bands. Using the frequencies, phases, and amplitudes we reconstruct the value
of the g-mode time series g(t) at time t using

g(t) =
n∑
i=0

Ai sin(2πf
′
it+ φi). (2)



2.2 Estimating the relationship between solar gravity mode time series and X-ray
flux series

Solar flare activity is monitored by the GOES series of spacecraft, and flares are classified
based on their peak flux in the 1-8 A band. The GOES spacecraft monitor X-ray flux
in the 1-8 A band at a high time resolution; we used 1 minute resolution data for the
forecasting analysis. X-ray flux was obtained from GOES-10, GOES-14, and GOES-15
satellites via SPIDR (http://spidr.ngdc.noaa.gov/spidr/ - GOES-10) and RESTful Web API
(http://ngdc.noaa.gov/goes/sem - GOES-14 and GOES-15). GOES-10 data was preferred
when available (from July 1, 1998 to Dec 1, 2009), followed by GOES-15 data (from
September 1, 2010 to October 31, 2013), and GOES-14 data when neither of the other
satellites were available.

For each estimation period, we obtained a gravity mode (g-mode) series g(t) using the
method described in the previous section and an X-ray flux series h(t) from the GOES
satellite data. Our hypothesis is that activity in g(t) maps in some way to activity in h(t).
More specifically, we suppose that the variance (or power) of g(t) and the variance (or
power) of log(h(t)) are related, where we log-transform the X-ray flux as a variance stabi-
lization procedure due to the occasional extreme value. We considered aggregation of the
variances at daily, weekly, and monthly resolutions. We define

xj =
1

|Tj | − 1

∑
t∈Tj

g(t)2 −

(∑
t∈Tj g(t)

)2
|Tj |

 (3)

to be the variance g-mode series, where t ∈ Tj means times t in the aggregation period Tj
(daily, weekly, or monthly), and |Tj | is the number of times t in the aggregation period Tj
(i.e. the cardinality of Tj). Similarly, we define

yj =
1

|Tj | − 1

∑
t∈Tj

log(h(t))2 −

(∑
t∈Tj log(h(t))

)2
|Tj |

 (4)

to be the variance of the log X-ray series.
We examined two types of relationships between the x and y series for their ability to

forecast future X-ray activity. The goal was to estimate some function yj = f(xj) in the
estimation period that is a good predictor of y in the forecast period, using forecast x as
input. The first relationship we examined was a simple linear regression between x and y
for daily, weekly, and monthly aggregation blocks. The second was a simple cumulative
model using g-mode activity x as input for daily and weekly aggregation blocks (estimation
periods were too short for monthly aggregation blocks using the cumulative model).

Linear forecast The linear regression forecasts involved estimating

yj = β̂0 + β̂1xj + εj , (5)

where β̂0, β̂1 are parameters estimated using standard least-squares regression by minimiz-
ing

∑
j ε

2
j . These β̂0 and β̂1 were estimated for each estimation period and aggregation

block, and the forecasting performance of each f(x) = β̂0 + β̂1x was evaluated by exam-
ining the correlation between f(x) and y in the forecast period. We examined the linear re-
gression forecast for daily, weekly, and monthly aggregated x and y time series. This linear
regression forecast model is consistent with the hypothesis that g-mode activity and solar
flare activity are directly related on the aggregation timescale (daily, weekly, monthly).



Cumulative model forecast The cumulative model forecasts used a state-space model of
the form

z∗j = zj−1 + αxj − αβ
zj = z∗j − γz∗j I

(
z∗j > δ

)
(6)

where z is a cumulative process of x, I() is the indicator function (equal to 1 if z∗j > δ,
and zero otherwise), and α, β, γ, δ, z0 are parameters. α > 0 is a scaling parameter. β rep-
resents a constant (each timestep) dissipation parameter. A key feature of this cumulative
model is the occasional dissipation of a fraction γ of the process (0 < γ < 1) whenever the
threshold δ is exceeded. Although an obvious simplification because γ and δ do not vary,
this feature is consistent with the hypothesis that solar flares are releases of accumulated
stresses due (in part) to g-mode energy. The cumulative model was fit in each estimation
period by minimizing the squared difference between z and y:

∑
j(zj−yj)2. We examined

the cumulative model forecast for daily and weekly aggregated x and y time series.

2.3 Retrospective analysis of forecast performance

To assess the forecast performance of the linear and cumulative model forecasts, we con-
ducted a retrospective analysis. We estimated g-modes over 189 day periods and forecast
over 189 day periods. Estimation periods were based on the availability of ACE magnetic
field data, and began on January 1 1999 at 23:50:00 UTM, proceeding in twenty-eight 189
day blocks ending on June 28 2013 at 23:50:00 UTM.

Our measure of forecast performance was the correlation between forecast variance in
GOES log X-ray flux and the actual variance in GOES log X-ray flux over the 189 day
forecast. A null model is expected to result in a correlation of zero between forecast and
actual because we expect half of the correlations to fall above zero and half to fall below
zero. Under this null model, we compute the probability of observing at least the number
of positive correlations that we observed if our forecast model was no better than random
chance (p-value). Due to missing X-ray flux data in some time periods, we were not able to
evaluate the performance of each forecasting technique for all twenty-eight 189 day time
periods.

Finally, as a proof-of-concept for Bonneville Power Authority (BPA) Technology In-
novation Project #290 (TIP-290), we generated a forecast for the period from November 1
2013 to May 10 2014 using ACE magnetic field data and GOES-15 log X-ray data from
April 25 2013 at 23:50:00 GMT to October 31 2013 at 23:50:00 GMT. The forecast was
generated using the weekly cumulative forecasting model (Figure 6). We expect to see
increased flare activity when the forecast series is high. BPA was interested in how a fore-
cast model might be integrated into operations. To make the forecast more user-friendly
for management and mitigation of possible impacts at BPA, we provided a colour-coded
table based on the raw forecast that characterized periods of high (red), medium (orange),
and low (green) forecast flare activity. The delineations were made based on percentiles of
the forecast series; weeks in the top 30% of forecast weeks were classified high, weeks in
the next 30% were classified medium, and weeks in the lowest 40% were classified low.
These delineations are qualitative in the sense that they don’t correspond to the probability
of solar events, but we expect a higher amount of flare activity as we move from green to
orange to red. In the results, we compare the colour-coded forecast to actual solar flares.
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Figure 3: Distributions of forecast correlations for the linear model fits using variance of
g-mode time series and variance of log X-ray time series aggregated by day, week, and
month. None of the linear models display performance better than chance.

3. Results

3.1 Forecast performance

One of our hypotheses was that variation in the g-mode series was linearly related to varia-
tion in the X-ray series on a daily, weekly, or monthly timescale. Under this hypothesis, we
expect there to be a reliable linear relationship between the variance of the g-mode series
and the variance of the X-ray series. The distribution of linear forecast correlations are
shown in Figure 3. None of the linear model forecasting techniques show performance that
is better than chance – about half of the forecast correlations were postive – and thus have
no consistent predictive power over the time period studied.

Although the linear model forecasts do not do consistently well in predicting variance
in X-ray flux, we considered the possibility that their performance is a function of the time
period studied. For example, the performance of the linear predictor may vary over the
course of a solar cycle. However, an examination of the linear forecast correlations over
the course of the retrospective analysis revealed that this was not the case. It appears that
the linear model is simply not able to capture the relationship between the g-mode series
and the X-ray flux series in a reliable way over an extended period. The linear model
coefficients showed a similarly random behaviour over time.

It seems a simple linear relationship is not enough to predict variance in the log X-ray
flux. Our second hypothesis was that accumulated stresses due in part to g-mode energy
may be responsible for increased flare activity. We specified a simple cumulative model
meant to capture the accumulation and release of energy consistent with our second hy-
pothesis. The distribution of cumulative model forecast correlations are shown in Figure
4. The weekly aggregated cumulative model appears to perform better than chance; 18/25
forecasts have positive correlation performance. The p-value for the null hypothesis of no
correlation on average is p = 0.02. The daily aggregation method showed a similar pat-
tern, but not to the same level of significance. Based on an examination of the cumulative
model fits in the training period, we suspect that the cumulative model we used may be too
sensitive to daily variability to capture the phenomena of interest in a reliable way.

Although many of the positive correlations in Figure 4 appear to be relatively small,
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Figure 4: Distributions of forecast correlations for the cumulative model fits using variance
of g-mode time series and variance of log X-ray time series aggregated by day and week.
The weekly aggregated cumulative model appears to perform better than chance; 18/25
forecasts have positive correlation performance. The p-value for the null hypothesis of no
correlation on average is p = 0.02.

even small correlations could provide useful forecasts. When the forecast correlation is
large, there is obvious agreement between the shape of the forecast series and the shape
of the actual historical data. However, even when the forecast correlation is small, there
can be general agreement between the forecast and historical data (Figure 5). This means
that although the magnitude of the forecast may be off due in part to the limitations of the
simple cumulative model used, times when the forecast is up tend to align with times of
increased variance in log X-ray flux. Thus, the forecast may be of some use in predicting
the timing of events, even in cases where the magnitude of events is not well predicted.

3.2 Forecast for the period November 1 2013 to May 10 2014

For BPA TIP-290, we generated a forecast for the period from November 1 2013 to May
10 2014 (Figure 6). The outputs of the forecast are the weekly predicted values of the solar
stress index z. Because this is a measure that is difficult to translate into management ac-
tions, we also provided BPA with a colour-coded weekly forecast of the propensity for large
flare events (Figure 7). With a couple of M-class exceptions, the colour-coded forecast was
able to predict weeks with and without large flare events for the first three-quarters of the
prediction period. However, prediction performance was not good in the final quarter. We
note that the purpose of the colour-coded prediction was not to demonstrate the predictive
capabilities of our method (as was the purpose of the retrospective analysis). Rather, the
purpose of the colour-coded prediction calendar was to provide an example of how the
stress index forecast might be translated into management or operational decision-making.
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Figure 5: Example weekly cumulative model forecast for small positive correlation. The
estimation period is to the left of the vertical line, and the forecast period is to the right.
The amplitude of the forecast does not match the historical variance in log X-ray flux, but
the timing may do well enough for prediction of events (with some misses).
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Figure 6: Cumulative model forecast for November 1 2013 to May 10 2014. The estima-
tion period is to the left of the vertical line, and the forecast period is to the right.
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Figure 7: Cumulative model forecast for November 1 2013 to May 10 2014. Weeks in the
top 30% of forecast weeks were classified high (red), weeks in the next 30% were classified
medium (yellow), and weeks in the lowest 40% were classified low (green). The time series
of GOES X-ray flux is also plotted. Flare events larger than class M5 are plotted as white
circles, except X-class flares which are plotted as black. Relative circle sizes correspond to
flare magnitudes.

4. Discussion

The approach that we have outlined here shows promise for forecasting over a timeframe
that is longer than current approaches, which are based on tracking the development of
active solar regions. The hypothesis that solar gravity modes provide a forcing mechanism
for solar flares is based on a plausible physical process: gravity modes operate in the core
of the Sun, and affect the convective layer above. In turn, the convective layer affects
the development of active regions and ultimately solar flares and mass ejections. Because
gravity modes are persistent, they can theoretically be predicted with a high degree of
accuracy. However, the challenge is in implementation.

Obtaining estimates of solar gravity modes is far from straightforward. Although we are
able to resolve many periodic components in the gravity mode band using ACE spacecraft
magnetic field data, sorting out complications such as line splittings and peak broadening
was beyond the scope of our current analysis. Gravity mode lines can be split for many
reasons: orbital geometry of the ACE spacecraft, rotation of the solar core, differential
rotation of the Sun, among others. Peak broadening implies frequency modulation of the
signal, possibly due to various intermediate processes occurring in the Sun.

Without resolving these g-mode estimation issues, it may be that even a six month fore-
cast horizon is too optimistic. Our anecdotal example forecast showed good performance
for 4+ months, but seemed to struggle for the final portion of the forecast. A targeted ap-
proach to gravity mode estimation, taking account of as many complicating processes as
possible, might improve forecast performance compared to our current approach, which
is to ignore intermediate processes and simply run estimated periodic components in the
g-mode band forward in time.



Alternatives to our simple cumulative stress model may also improve prediction perfor-
mance. For example, avalanche models have recently been shown to be able to reproduce
the statistical behaviour of solar flares in active regions (Strugarek and Charbonneau 2014),
and may also provide an approach to modelling g-mode forcing of flares. Adjustment of
the cumulative stress model to include the effects of the 11 year solar cycle would also be
a good starting point for improvement. Finally, the choice of performance measure might
be improved. If the goal is to predict the timing of events, the use of a classification mea-
sure such as a confusion matrix might be more appropriate than correlation between ob-
served and predicted X-ray flux. This could affect the choice of model or even the method
by which model parameters are fit to data in the training period. It could also provide
management-oriented measures of performance directly e.g. probability of a flare event in
a given time period.

5. Conclusion

Beginning from our hypothesis that solar flare activity is triggered by solar gravity modes,
and with the goal of forecasting periods of high flare activity, we obtained solar gravity
mode estimates from ACE spacecraft measurements. Using a weekly timestep, we found
that a simple state-space model that accumulates solar stress and uses forecast solar gravity
modes as input was able to predict variability in GOES X-ray flux where a simple linear
relationship failed. Using the inferred solar stress index, we generated a qualitative forecast
of solar flare activity that has promising performance. We suspect that the forecast horizon
is limited to about six months, which is a substantial improvement compared to current
techniques. We hope that further refinements to our technique will improve prediction
performance.
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González Hernández, I. (2013), “Helioseismology in Space Weather,” in Astronomical So-
ciety of the Pacific Conference Series, eds. Jain, K., Tripathy, S. C., Hill, F., Leibacher,
J. W., and Pevtsov, A. A., vol. 478 of Astronomical Society of the Pacific Conference
Series, p. 309.



Komm, R., De Moortel, I., Fan, Y., Ilonidis, S., and Steiner, O. (2013), “Sub-photosphere
to solar atmosphere connection,” Space Science Reviews, 1–33.

Reinard, A., Henthorn, J., Komm, R., and Hill, F. (2010), “Evidence that temporal changes
in solar subsurface helicity precede active region flaring,” The Astrophysical Journal
Letters, 710, L121.

Ruzmaikin, A., Feynman, J., and Stoev, S. (2011), “Distribution and clustering of fast
coronal mass ejections,” Journal of Geophysical Research, 116, A04220.

Strugarek, A. and Charbonneau, P. (2014), “Predictive capabilities of avalanche models for
solar flares,” Solar Physics, 1–14.

Thomson, D., Lanzerotti, L., and Maclennan, C. (2001), “Interplanetary magnetic field:
Statistical properties and discrete modes,” Journal of Geophysical Research: Space
Physics (1978–2012), 106, 15941–15962.

Thomson, D. J. (1982), “Spectrum estimation and harmonic analysis,” Proceedings of the
IEEE, 70, 1055–1096.

— (2000), “Baseline and Distribution Estimates of Complicated Spectra,” in Proc. Tenth
IEEE Signal Processing Workshop, Pocono Manor, PA: IEEE Press, pp. 414–418.

Thomson, D. J., Maclennan, C. G., and Lanzerotti, L. J. (1995), “Propagation of solar
oscillations through the interplanetary medium,” Nature, 376, 139–144.


